A368824 a(n) is the smallest degree of (0,1)-polynomial with exactly n real distinct roots.
1, 2, 7, 10, 19, 28
Offset: 1
Links
- P. Borwein, T. Erdélyi, and G. Kós, Littlewood-type problems on [0,1], Proc. London Math. Soc. 79 (1999), 22-46.
- MathOverflow, Number of real roots of 0,1 polynomial.
- A. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, L’Enseignement Mathématique 39 (1993), 317-348.
Programs
-
Mathematica
(* Suitable only for 1 <= n <= 4; for larger n, special Julia and Python packages are needed *) Table[Exponent[Monitor[Catch[Do[ poly = FromDigits[IntegerDigits[k, 2], x]; res = Length@{ToRules@Reduce[poly == 0, x, Reals]}; If[res == n, Throw@{res, Expand@poly}] , {k, 2000}]], k][[2]], x], {n, 1, 4}]
-
Python
from itertools import count from sympy.abc import x from sympy import sturm, oo, sign, nan, LT def A368824(n): for m in count(2): l = len(s:=bin(m)[2:]) q = sturm(sum(int(s[i])*x**(l-i-1) for i in range(l))) a = [1 if (k:=LT(p).subs(x,-oo))==nan else sign(k) for p in q[:-1]]+[sign(q[-1])] b = [1 if (k:=LT(p).subs(x,oo))==nan else sign(k) for p in q[:-1]]+[sign(q[-1])] if n==sum(1 for i in range(len(a)-1) if a[i]!=a[i+1])-sum(1 for i in range(len(b)-1) if b[i]!=b[i+1]): return l-1 # Chai Wah Wu, Feb 15 2024
Formula
a(n) ~ C*n^2 (see Odlyzko and Poonen) with numerical estimate 0.7 < C < 0.9.
Comments