A368832 Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.
36, 60, 72, 84, 100, 108, 120, 132, 140, 144, 156, 168, 180, 196, 200, 204, 216, 220, 225, 228, 240, 252, 260, 264, 276, 280, 288, 300, 308, 312, 315, 324, 336, 340, 348, 360, 364, 372, 380, 392, 396, 400, 408, 420, 432, 440, 441, 444, 450, 456, 460, 468, 476, 480, 484, 492, 495, 500, 504, 516, 520, 525, 528, 532, 540, 552
Offset: 1
Links
- S. Evdokimov, I. Kovacs, and I. Ponomarenko, On Schurity of Finite Abelian Groups, Comm. Algebra 44 (2016) 101-117, see the Cyclic Schur Group Theorem.
Programs
-
Maple
isA007304 := proc(n) if bigomega(n) = 3 and A001221(n) =3 then true; else false ; end if; end proc: # list of prime exponents pexp := proc(n) local e,pe ; e := [] ; for pe in ifactors(n)[2] do e := [op(e),op(2,pe)] ; end do: e ; end proc: isCycSchGr := proc(n) local om,nhalf ,pe; om := A001221(n) ; if om > 4 then return false; elif om = 4 then # require 2*p*q*r if type(n,'even') and type(n/2,'odd') then nhalf := n/2 ; # require nhalf =p*q*r in A007304 return isA007304(nhalf) ; else false; end if; elif om = 3 then # require p*q*r or 2*p*q^k if type(n,'even') and type(n/2,'odd') then nhalf := n/2 ; # require nhalf =p*q^k pe := pexp(nhalf) ; if nops(pe) =2 and 1 in convert(pe,set) then true; else false ; end if; elif type(n,'odd') then # require n =p*q*r if isA007304(n) then true; else false ; end if; else false; end if; elif om = 2 then # require p*q^k pe := pexp(n) ; if 1 in convert(pe,set) then true; else false; end if; else # p^k, k>=0 true ; end if; end proc: for n from 1 to 3000 do if not isCycSchGr(n) then printf("%d,",n) ; end if; end do:
Comments