cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368832 Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.

Original entry on oeis.org

36, 60, 72, 84, 100, 108, 120, 132, 140, 144, 156, 168, 180, 196, 200, 204, 216, 220, 225, 228, 240, 252, 260, 264, 276, 280, 288, 300, 308, 312, 315, 324, 336, 340, 348, 360, 364, 372, 380, 392, 396, 400, 408, 420, 432, 440, 441, 444, 450, 456, 460, 468, 476, 480, 484, 492, 495, 500, 504, 516, 520, 525, 528, 532, 540, 552
Offset: 1

Views

Author

R. J. Mathar, Jan 07 2024

Keywords

Comments

Cyclic groups of these orders cannot be Schur groups, see the Theorem by [Evdokimov et al.].

Crossrefs

Cf. A051270 (subsequence), A036785 (subsequence), A074969 (subsequence).

Programs

  • Maple
    isA007304 := proc(n)
        if bigomega(n) = 3 and A001221(n) =3 then
            true;
        else
            false ;
        end if;
    end proc:
    # list of prime exponents
    pexp := proc(n)
        local e,pe ;
        e := [] ;
        for pe in ifactors(n)[2] do
            e := [op(e),op(2,pe)] ;
        end do:
        e ;
    end proc:
    isCycSchGr := proc(n)
        local om,nhalf ,pe;
        om := A001221(n) ;
        if  om > 4 then
            return false;
        elif om = 4 then
            # require 2*p*q*r
            if type(n,'even') and type(n/2,'odd') then
                nhalf := n/2 ;
                # require nhalf =p*q*r in A007304
                return isA007304(nhalf) ;
            else
                false;
            end if;
        elif om = 3 then
            # require p*q*r or 2*p*q^k
            if type(n,'even') and type(n/2,'odd') then
                nhalf := n/2 ;
                # require nhalf =p*q^k
                pe := pexp(nhalf) ;
                if nops(pe) =2 and 1 in convert(pe,set) then
                    true;
                else
                    false ;
                end if;
            elif type(n,'odd') then
                # require n =p*q*r
                if isA007304(n) then
                    true;
                else
                    false ;
                end if;
            else
                false;
            end if;
        elif om = 2 then
            # require p*q^k
            pe := pexp(n) ;
            if 1 in convert(pe,set) then
                true;
            else
                false;
            end if;
        else
            # p^k, k>=0
            true ;
        end if;
    end proc:
    for n from 1 to 3000 do
        if not isCycSchGr(n) then
            printf("%d,",n) ;
        end if;
    end do: