A368836 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.
1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 1 2 2 1 2 6 6 2 1 6 17 18 8 2 1 21 52 58 30 9 2 1 Representatives of the loop-graphs counted by row n = 4: {12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4} {12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14} {1}{12}{13}{24} {1}{2}{13}{14} {1}{12}{23}{24} {1}{2}{13}{23} {1}{12}{23}{34} {1}{2}{13}{24} {1}{23}{24}{34} {1}{2}{13}{34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024
Extensions
a(28) onwards from Andrew Howroyd, Jan 13 2024
Comments