cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368847 Triangle read by rows: T(n, k) = numerator(M(n, k)) where M is the inverse matrix of A368846.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 1, 17, 1, 1, 0, 0, 691, 691, 59, 41, 5, 1, 0, 0, 14, 2, 359, 8, 4, 1, 1, 0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1, 0, 0, 43867, 43867, 750167, 6583, 943, 1129, 217, 2, 1, 0, 0, 1222277, 174611, 627073, 1540967, 28399, 53, 47, 23, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jan 07 2024

Keywords

Comments

The row sums of the triangle, seen in its rational form A368847(n)/ A368848(n), are the unsigned Bernoulli numbers |B(2n)|. To get the signed Bernoulli numbers B(2n), one only needs to change the sign factor in the definition of A368846 from (-1)^(n + k) to (-1)^(n + 1).

Examples

			[0] [1]
[1] [0, 1]
[2] [0, 0,    1]
[3] [0, 0,    1,     1]
[4] [0, 0,    1,     1,    1]
[5] [0, 0,    1,     3,    1,   1]
[6] [0, 0,    1,     1,   17,   1,   1]
[7] [0, 0,  691,   691,   59,  41,   5, 1]
[8] [0, 0,   14,     2,  359,   8,   4, 1, 1]
[9] [0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1]
		

Crossrefs

Cf. A368846 (inverse), A368848 (denominator), A369134, A369135, A000367/A002445 (Bernoulli(2n)).

Programs

  • Mathematica
    A368846[n_,k_]:=If[k==0,Boole[n==0],(-1)^(n+k)2Binomial[2k-1,n]Binomial[2n+1,2k]];
    Numerator[MapIndexed[Take[#,First[#2]]&,Inverse[PadRight[Table[A368846[n,k],{n,0,10},{k,0,n}]]]]] (* Paolo Xausa, Jan 08 2024 *)
  • SageMath
    M = matrix(ZZ, 10, 10, lambda n, k: A368846(n, k) if k <= n else 0)
    I = M.inverse()
    for n in range(9): print([I[n][k].numerator() for k in range(n+1)])