A368847 Triangle read by rows: T(n, k) = numerator(M(n, k)) where M is the inverse matrix of A368846.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 1, 17, 1, 1, 0, 0, 691, 691, 59, 41, 5, 1, 0, 0, 14, 2, 359, 8, 4, 1, 1, 0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1, 0, 0, 43867, 43867, 750167, 6583, 943, 1129, 217, 2, 1, 0, 0, 1222277, 174611, 627073, 1540967, 28399, 53, 47, 23, 1, 1
Offset: 0
Examples
[0] [1] [1] [0, 1] [2] [0, 0, 1] [3] [0, 0, 1, 1] [4] [0, 0, 1, 1, 1] [5] [0, 0, 1, 3, 1, 1] [6] [0, 0, 1, 1, 17, 1, 1] [7] [0, 0, 691, 691, 59, 41, 5, 1] [8] [0, 0, 14, 2, 359, 8, 4, 1, 1] [9] [0, 0, 3617, 10851, 1237, 217, 293, 1, 7, 1]
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
- Peter Luschny, Illustrating the polynomials.
Crossrefs
Programs
-
Mathematica
A368846[n_,k_]:=If[k==0,Boole[n==0],(-1)^(n+k)2Binomial[2k-1,n]Binomial[2n+1,2k]]; Numerator[MapIndexed[Take[#,First[#2]]&,Inverse[PadRight[Table[A368846[n,k],{n,0,10},{k,0,n}]]]]] (* Paolo Xausa, Jan 08 2024 *)
-
SageMath
M = matrix(ZZ, 10, 10, lambda n, k: A368846(n, k) if k <= n else 0) I = M.inverse() for n in range(9): print([I[n][k].numerator() for k in range(n+1)])
Comments