A368877 a(n) = f^k(n) where f(n) = A014682(n), the Collatz map, and k = A070939(n), the length of n in base 2.
2, 2, 8, 2, 2, 8, 26, 2, 17, 2, 20, 8, 8, 26, 80, 2, 5, 17, 17, 2, 2, 20, 20, 8, 22, 8, 71, 26, 26, 80, 242, 2, 44, 5, 5, 17, 17, 17, 152, 2, 161, 2, 56, 20, 20, 20, 182, 8, 7, 22, 22, 8, 8, 71, 71, 26, 74, 26, 76, 80, 80, 242, 728, 2, 14, 44, 44, 5, 5, 5, 137, 17, 47, 17, 16
Offset: 1
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Shalom Eliahou, Jean Fromentin, and Rénald Simonetto, Is the Syracuse falling time bounded by 12?, hal-03294829, 2021.
Programs
-
Mathematica
A368877[n_] := Nest[If[OddQ[#], (3*#+1)/2, #/2]&, n, BitLength[n]]; Array[A368877, 100] (* Paolo Xausa, Jan 08 2024 *)
-
PARI
T(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682 a(n) = my(N=1+logint(n, 2)); for (i=1, N, n = T(n)); n;
Comments