cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368888 a(n) = Sum_{k=0..floor(n/2)} n^(2*k) * binomial(n-k,k).

Original entry on oeis.org

1, 1, 5, 19, 305, 1976, 54613, 494901, 19460545, 226000855, 11535280901, 163226844144, 10246715573041, 170910034261721, 12736193619206485, 244588264748170651, 21100437309369290497, 458426839205360652760, 44935948904379592796101
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Hypergeometric2F1[1/2 - n/2, -n/2, -n, -4*n^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, n^(2*k)*binomial(n-k, k));

Formula

a(n) = [x^n] 1/(1 - x - (n*x)^2).
a(n) ~ (exp(1/2) + (-1)^n*exp(-1/2)) * n^n / 2. - Vaclav Kotesovec, Jan 09 2024

A368890 a(n) = Sum_{k=0..floor(n/2)} n^(3*(n-2*k)) * binomial(n-k,k).

Original entry on oeis.org

1, 1, 65, 19737, 16789505, 30525391000, 101570840860033, 558574349855881107, 4722492584690006360065, 58150612359276833311664895, 1000009000028000035000015000001, 23225285520096132372224712190010064, 708804486128121003209727133170234347521
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n^(3*n) * Hypergeometric2F1[1/2 - n/2, -n/2, -n, -4/n^6], {n, 1, 15}]] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, n^(3*(n-2*k))*binomial(n-k, k));

Formula

a(n) = [x^n] 1/(1 - n^3*x - x^2).
a(n) ~ n^(3*n). - Vaclav Kotesovec, Jan 09 2024
Showing 1-2 of 2 results.