A368924 Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 1 1 9 6 1 15 68 48 12 1 222 720 510 150 20 1 3670 9738 6825 2180 360 30 1 68820 159628 110334 36960 6895 735 42 1 Row n = 3 counts the following loop-graphs: {{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}} {{1},{1,2},{2,3}} {{1},{2},{2,3}} {{1},{1,3},{2,3}} {{1},{3},{1,2}} {{2},{1,2},{1,3}} {{1},{3},{2,3}} {{2},{1,2},{2,3}} {{2},{3},{1,2}} {{2},{1,3},{2,3}} {{2},{3},{1,3}} {{3},{1,2},{1,3}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
PARI
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]} { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
Formula
E.g.f.: A(x,y) = exp(-log(1-T(x))/2 - T(x)/2 + y*T(x) - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 14 2024
Extensions
a(36) onwards from Andrew Howroyd, Jan 14 2024
Comments