A368927 Number of labeled loop-graphs covering a subset of {1..n} such that it is possible to choose a different vertex from each edge.
1, 2, 7, 39, 314, 3374, 45630, 744917, 14245978, 312182262, 7708544246, 211688132465, 6397720048692, 210975024924386, 7537162523676076, 289952739051570639, 11949100971787370300, 525142845422124145682, 24515591201199758681892, 1211486045654016217202663
Offset: 0
Keywords
Examples
The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons): {} {} {} {{1}} {{1}} {{2}} {{1,2}} {{1},{2}} {{1},{1,2}} {{2},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}]
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024
Formula
Binomial transform of A369140.
E.g.f.: exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024
Extensions
a(7) onwards from Andrew Howroyd, Feb 02 2024
Comments