A368953 Irregular triangle read by rows: row n lists (in lexicographical order and with duplicates removed) the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string.
31, 310, 311, 31010, 3110, 31111, 301, 310, 310101010, 3110110, 311110, 311111111, 3010, 30101, 3011111, 3100, 31010, 31010101010101010, 3101111, 3110110110110, 3110111, 3111011, 3111101, 31111011110, 3111110, 3111111110, 31111111111111111
Offset: 0
Examples
After recursively applying the rules three times, we get the following tree (cf. Hofstadter (1979), page 40, Figure 11). . MI 0 ---------------------- 31 / \ 1 2 <--- Rule applied / \ MIU MII 1 ---------------- 310 311 / / \ 2 1 2 / / \ MIUIU MIIU MIIII 2 --------- 31010 3110 31111 / / / | | \ 2 2 1 2 3 3 / / / | | \ MIUIUIUIU MIIUIIU MIIIIU | MUI MIU 3 --- 310101010 3110110 311110 | 301 310 MIIIIIIII 311111111 . After ordering the encoded strings lexicographically within a tree level (and removing duplicates, if present), the triangle begins: [0] 31; [1] 310 311; [2] 31010 3110 31111; [3] 301 310 310101010 3110110 311110 311111111; ... Please note that some strings may be present in different rows: within the first four rows, the string MIU (310) is present in rows 1 and 3.
References
- Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..16809 (rows 0..8 of the triangle, flattened).
- Wikipedia, MU Puzzle
- Index entries for sequences from "Goedel, Escher, Bach"
Programs
-
Mathematica
MIUStepL[s_] := Union[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> StringDrop[#, 1], StringReplaceList[#, {"111" -> "0", "00" -> ""}]}&, s]]]; With[{rowmax = 4}, Map[FromDigits, NestList[MIUStepL, {"31"}, rowmax], {2}]]
Comments