cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368957 Expansion of (1/x) * Series_Reversion( x * (1-x^2/(1-x))^2 ).

Original entry on oeis.org

1, 0, 2, 2, 13, 28, 127, 376, 1522, 5210, 20403, 74952, 292313, 1114704, 4371839, 17040586, 67378981, 266402370, 1061919289, 4241539218, 17030430061, 68554148388, 276988107861, 1121954081852, 4557637048543, 18556386241468, 75729621399950
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x^2/(1-x))^2)/x)
    
  • PARI
    a(n, s=2, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(n-k-1,n-2*k).
D-finite with recurrence 2000*n*(48911424697856946605*n -85862091501967897127)*(2*n+1) *(2*n-1)*(n+1)*a(n) +20*n*(2*n-1) *(9782284939571389321000*n^3 -124853950521493511435497*n^2 +291346534864358121613940*n -174094174192357320452243)*a(n-1) +6*(-1056620466555214160730036*n^5 +5240184994626612582867927*n^4 -10842595636486250859803566*n^3 +12555800263623324081669713*n^2 -8323849827256795107408998*n +2408908212964334471344960)*a(n-2) +(-11765946248792268093670721*n^5 +111908835475719217483707009*n^4 -409273054609037480568616913*n^3 +706828511197147489881004671*n^2 -556026097737885029117618846*n +145005575225258917734060720)*a(n-3) +12*(110108843793156901781209*n^5 -1706708924562157727758594*n^4 +10728825545391547292463142*n^3 -34121900584137543620498771*n^2+54762746448568812780284884*n -35381689886652975706836240)*a(n-4) -36*(3*n-11)*(n-4)*(3*n-13) *(2*n-7)*(36626509829570139536*n -97211536327074911575)*a(n-5)=0. - R. J. Mathar, Jan 25 2024