A368962
Expansion of (1/x) * Series_Reversion( x * (1-x-x^3)^2 ).
Original entry on oeis.org
1, 2, 7, 32, 165, 910, 5251, 31314, 191463, 1193808, 7561825, 48522630, 314752515, 2060587112, 13597183916, 90342651982, 603886553067, 4058197580308, 27401404029181, 185806213609730, 1264774546754103, 8639226724499070, 59198404680049915
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^3)^2)/x)
-
a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A368967
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x-x^2)^2 ).
Original entry on oeis.org
1, 4, 28, 238, 2244, 22568, 237199, 2574276, 28627224, 324503718, 3735672880, 43555658640, 513277420803, 6103767231712, 73153216133600, 882708243017414, 10714917867247020, 130752597362068496, 1603069096165788706, 19737123968746454284, 243930175282166574432
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x-x^2)^2)/x)
-
a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A368965
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^2)^2 ).
Original entry on oeis.org
1, 3, 17, 117, 895, 7309, 62410, 550431, 4975297, 45846977, 429095387, 4067760593, 38977419018, 376901628882, 3673226867356, 36043590216621, 355800292078095, 3530878133357175, 35205183620396571, 352505713454687599, 3543078943592291301
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^2)^2)/x)
-
a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A368969
Expansion of (1/x) * Series_Reversion( x * (1-x+x^2)^2 ).
Original entry on oeis.org
1, 2, 5, 12, 22, 0, -284, -1938, -9367, -36938, -118105, -260130, 56637, 4890560, 35945616, 186674620, 782890326, 2632462236, 5987222046, -2241224328, -129137211280, -967479390360, -5145272296080, -22060975744080, -75535676951124, -172915138783080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^2)^2)/x)
-
a(n, s=2, t=2, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A371574
G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x*A(x)) )^2.
Original entry on oeis.org
1, 2, 13, 106, 986, 9902, 104641, 1146654, 12910674, 148462310, 1736178005, 20584835962, 246874102771, 2989580399330, 36504669373240, 448960388422126, 5556453433915920, 69150493021938224, 864833621158491876, 10863849369160145222, 137011477676531989664
Offset: 0
-
a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A369510
Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^2)^2 ).
Original entry on oeis.org
1, 4, 28, 240, 2288, 23296, 248064, 2728704, 30764800, 353633280, 4128783360, 48827351040, 583674642432, 7041154416640, 85610725769216, 1048040981594112, 12907157115568128, 159802897621319680, 1987875305403187200, 24833149969036738560, 311409431144819589120
Offset: 0
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.
Cf.
A153231 (colorful triangulations with an even number of points).
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^2)^2)/x)
-
a(n) = sum(k=0, n\2, binomial(2*n+k+1, k)*binomial(5*n+3, n-2*k))/(n+1);
A369486
Expansion of (1/x) * Series_Reversion( x / (1-x) * (1-x-x^2)^2 ).
Original entry on oeis.org
1, 1, 4, 15, 67, 314, 1547, 7865, 41004, 217953, 1176832, 6436676, 35587416, 198569471, 1116741601, 6323669519, 36024382515, 206315985386, 1187205083042, 6860598312545, 39797882898452, 231666709974264, 1352813494962672, 7922553881534274, 46520280837291427
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)*(1-x-x^2)^2)/x)
-
a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A370617
Coefficient of x^n in the expansion of 1 / (1-x-x^2)^(2*n).
Original entry on oeis.org
1, 2, 14, 98, 726, 5522, 42770, 335512, 2656998, 21195944, 170076214, 1371181110, 11098310730, 90128497032, 734008622872, 5992486341248, 49028047353670, 401885885751630, 3299812135410080, 27134786911366212, 223433635272820126, 1842041118321640390
Offset: 0
-
a(n, s=2, t=2, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
A371575
G.f. satisfies A(x) = ( 1 + x*A(x)^3 * (1 + x*A(x)) )^2.
Original entry on oeis.org
1, 2, 15, 144, 1587, 18942, 238301, 3111788, 41779164, 573127760, 7998164674, 113189243386, 1620583793262, 23431706243230, 341654376602948, 5017986762425680, 74170837061591036, 1102479579201183898, 16469074050937364044, 247115476148847822586
Offset: 0
-
a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A376326
Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^4 ).
Original entry on oeis.org
1, 4, 30, 272, 2737, 29380, 329614, 3818540, 45329440, 548511612, 6740687924, 83898110660, 1055441468145, 13398494365088, 171422870731600, 2208161418665872, 28614197357895055, 372754395074051500, 4878709294080115494, 64123505084010848580, 846018700129069313495
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^4)/x)
-
a(n, s=2, t=4, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
Showing 1-10 of 10 results.
Comments