A368968
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x-x^3)^2 ).
Original entry on oeis.org
1, 4, 26, 206, 1813, 17030, 167229, 1695920, 17624932, 186722580, 2009077416, 21894695420, 241170873096, 2680761546396, 30032284769832, 338744791093796, 3843699928567438, 43844993166845920, 502497843180361288, 5783367971991398760, 66815895492710846218
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x-x^3)^2)/x)
-
a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A368957
Expansion of (1/x) * Series_Reversion( x * (1-x^2/(1-x))^2 ).
Original entry on oeis.org
1, 0, 2, 2, 13, 28, 127, 376, 1522, 5210, 20403, 74952, 292313, 1114704, 4371839, 17040586, 67378981, 266402370, 1061919289, 4241539218, 17030430061, 68554148388, 276988107861, 1121954081852, 4557637048543, 18556386241468, 75729621399950
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x^2/(1-x))^2)/x)
-
a(n, s=2, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A369014
Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^3 ).
Original entry on oeis.org
1, 0, 0, 3, 3, 3, 36, 78, 129, 685, 2043, 4554, 17233, 57279, 153045, 509848, 1724739, 5117643, 16445555, 55165536, 173225715, 555899673, 1847495415, 5971507824, 19333284247, 63975307425, 209807070669, 685973054145, 2269660792842, 7501194321663, 24725092907853
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^3)/x)
-
a(n, s=3, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A369077
Expansion of (1/x) * Series_Reversion( x * (1+x^3/(1-x))^2 ).
Original entry on oeis.org
1, 0, 0, -2, -2, -2, 13, 32, 55, -72, -439, -1152, -506, 4870, 20613, 31744, -26392, -313096, -826529, -654362, 3635175, 16431826, 30100349, -15474300, -262654439, -780688624, -756130333, 3013376172, 15711713509, 31584466782, -6090973971, -250819494954
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x^3/(1-x))^2)/x)
-
a(n, s=3, t=2, u=-2) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A369489
Expansion of (1/x) * Series_Reversion( x / (1-x) * (1-x-x^3)^2 ).
Original entry on oeis.org
1, 1, 2, 7, 26, 98, 387, 1589, 6688, 28676, 124880, 550926, 2456831, 11056693, 50152457, 229050621, 1052393802, 4861062466, 22559964766, 105144660498, 491922058878, 2309456782464, 10876596029574, 51372213424194, 243283513468707, 1154929327702775, 5495105429597720
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)*(1-x-x^3)^2)/x)
-
a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
Showing 1-5 of 5 results.