cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369019 Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k).

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 0, 9, 12, 36, 0, 64, 72, 144, 432, 0, 625, 640, 1080, 2160, 6400, 0, 7776, 7500, 11520, 19440, 38400, 112500, 0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144, 0, 2097152, 1882384, 2612736, 3780000, 5734400, 9450000, 18289152, 52706752
Offset: 0

Views

Author

Peter Luschny, Jan 13 2024

Keywords

Examples

			Triangle starts:
[0] [0]
[1] [0,      1]
[2] [0,      2,      4]
[3] [0,      9,     12,     36]
[4] [0,     64,     72,    144,    432]
[5] [0,    625,    640,   1080,   2160,   6400]
[6] [0,   7776,   7500,  11520,  19440,  38400, 112500]
[7] [0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144]
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k):
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A369019[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k);
    Table[A369019[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 27 2024 *)
  • SageMath
    def A369019(n, k):
        return binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k)

Formula

Showing 1-1 of 1 results.