A369021 Numbers k such that k, k+1 and k+2 have the same maximal exponent in their prime factorization.
5, 13, 21, 29, 33, 37, 41, 57, 65, 69, 77, 85, 93, 98, 101, 105, 109, 113, 129, 137, 141, 157, 165, 177, 181, 185, 193, 201, 209, 213, 217, 221, 229, 237, 253, 257, 265, 281, 285, 301, 309, 317, 321, 329, 345, 353, 357, 365, 381, 389, 393, 397, 401, 409, 417, 429
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] == emax[#+2] &]
-
PARI
emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2])); lista(kmax) = {my(e1 = 0, e2 = 0, e3); for(k = 3, kmax, e3 = emax(k); if(e1 == e2 && e2 == e3, print1(k-2, ", ")); e1 = e2; e2 = e3);}
Comments