cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369023 Expansion of (1/x) * Series_Reversion( x * (1-2*x)^3 / (1-x) ).

Original entry on oeis.org

1, 5, 43, 451, 5253, 65297, 848503, 11387047, 156602761, 2195519965, 31261365155, 450840279787, 6571775541069, 96669928040745, 1433170971310191, 21392403565317839, 321228841377255953, 4849129915768191413, 73545708989920501147, 1120169585882592246419
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2024

Keywords

Crossrefs

Programs

  • Maple
    A369023 := proc(n)
        add(binomial(3*n+k+2,k) * binomial(3*n+1,n-k),k=0..n) ;
        %/(n+1) ;
    end proc;
    seq(A369023(n),n=0..70) ; % R. J. Mathar, Jan 25 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-2*x)^3/(1-x))/x)
    
  • PARI
    a(n, s=1, t=3, u=-1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(3*n+1,n-k).
D-finite with recurrence 27*(3*n+2)*(3*n+1)*(n+1)*a(n) +9*(-689*n^3 +263*n^2 -132*n +16)*a(n-1) +6*(6039*n^3 -20979*n^2 +23222*n -8050)*a(n-2) +(43*n^3 -5790*n^2 +25097*n -27570)*a(n-3) -15*(3*n-10)*(3*n-8)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 25 2024