A369025 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * k *(n - k + 1)^(n - k) / 2).
0, 0, 0, 0, 1, 2, 0, 4, 6, 18, 0, 32, 36, 72, 216, 0, 312, 320, 540, 1080, 3200, 0, 3888, 3750, 5760, 9720, 19200, 56250, 0, 58824, 54432, 78750, 120960, 201600, 393750, 1143072, 0, 1048576, 941192, 1306368, 1890000, 2867200, 4725000, 9144576, 26353376
Offset: 0
Examples
Triangle starts: [0] [0] [1] [0, 0] [2] [0, 1, 2] [3] [0, 4, 6, 18] [4] [0, 32, 36, 72, 216] [5] [0, 312, 320, 540, 1080, 3200] [6] [0, 3888, 3750, 5760, 9720, 19200, 56250] [7] [0, 58824, 54432, 78750, 120960, 201600, 393750, 1143072]
Programs
-
Mathematica
A369025[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k) / 2]; Table[A369025[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 12 2024 *)
-
SageMath
def A369025(n, k): return binomial(n, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k)//2 for n in range(9): print([A369025(n, k) for k in range(n+1)])