cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369031 LCM-transform of permutation induced by partition conjugation via Heinz numbers (A122111).

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 5, 3, 1, 2, 1, 2, 1, 1, 7, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 5, 1, 2, 1, 2, 11, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 13, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

See discussion at A368900.
From the reduced formula it follows that for all i, j >= 1: A101296(i) = A101296(j) => a(i) = a(j), that is, the value of each a(n) is completely determined by its prime signature. Note that the same does not hold for related A369032.

Crossrefs

Programs

  • PARI
    up_to = 2^18;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    v369031 = LCMtransform(vector(up_to,i,A122111(i)));
    A369031(n) = v369031[n];
    
  • PARI
    A369031(n) = if(isprime(n),2, my(e=ispower(n,,&n)); if(e && isprime(n), prime(e), 1));

Formula

a(n) = lcm {1..A122111(n)} / lcm {1..A122111(n-1)}.
a(n) = A014963(A122111(n)). [A122111 satisfies the property S given in A368900]
If n = p^k, p prime, k >= 1, then a(n) = A000040(k), otherwise a(n) = 1.