cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369041 LCM-transform of binary Gray code (A003188).

Original entry on oeis.org

1, 3, 2, 1, 7, 5, 2, 1, 13, 1, 1, 1, 11, 3, 2, 1, 5, 3, 1, 1, 31, 29, 1, 1, 1, 23, 1, 1, 19, 17, 2, 1, 7, 1, 1, 1, 1, 53, 1, 1, 61, 1, 1, 1, 59, 1, 1, 1, 41, 43, 1, 1, 47, 1, 1, 1, 37, 1, 1, 1, 1, 1, 2, 1, 97, 1, 1, 1, 103, 101, 1, 1, 109, 1, 1, 1, 107, 1, 1, 1, 11, 1, 1, 1, 127, 5, 1, 1, 1, 1, 1, 1, 1, 113, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Binary Gray code, A003188, is a permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A003188(n)) = A000523(n), from which it immediately follows that A003188 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A003188(n)), for n >= 1.

Crossrefs

Programs

  • Mathematica
    nn = 120; a[1] = s[1] = 1; Do[s[n] = LCM[s[n - 1], BitXor[n, Floor[n/2]] ]; a[n] = s[n]/s[n - 1], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A003188(n) = bitxor(n, n>>1);
    v369041 = LCMtransform(vector(up_to,i,A003188(i)));
    A369041(n) = v369041[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A003188(n)} / lcm {1..A003188(n-1)}.
a(n) = A014963(A003188(n)). [See comments.]