A369041 LCM-transform of binary Gray code (A003188).
1, 3, 2, 1, 7, 5, 2, 1, 13, 1, 1, 1, 11, 3, 2, 1, 5, 3, 1, 1, 31, 29, 1, 1, 1, 23, 1, 1, 19, 17, 2, 1, 7, 1, 1, 1, 1, 53, 1, 1, 61, 1, 1, 1, 59, 1, 1, 1, 41, 43, 1, 1, 47, 1, 1, 1, 37, 1, 1, 1, 1, 1, 2, 1, 97, 1, 1, 1, 103, 101, 1, 1, 109, 1, 1, 1, 107, 1, 1, 1, 11, 1, 1, 1, 127, 5, 1, 1, 1, 1, 1, 1, 1, 113, 1, 1, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Scatterplot of a(n), n = 1..2^16.
- Index entries for sequences related to binary expansion of n
Programs
-
Mathematica
nn = 120; a[1] = s[1] = 1; Do[s[n] = LCM[s[n - 1], BitXor[n, Floor[n/2]] ]; a[n] = s[n]/s[n - 1], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
-
PARI
up_to = 65537; \\ Checked up to 2^17; LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); }; A003188(n) = bitxor(n, n>>1); v369041 = LCMtransform(vector(up_to,i,A003188(i))); A369041(n) = v369041[n]; A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
Comments