cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369043 LCM-transform of Blue code (A193231).

Original entry on oeis.org

1, 3, 2, 5, 2, 1, 7, 1, 1, 1, 13, 1, 11, 3, 2, 17, 2, 1, 19, 1, 1, 23, 1, 1, 31, 29, 1, 3, 1, 1, 5, 1, 1, 1, 7, 1, 1, 53, 1, 1, 61, 1, 1, 1, 1, 1, 59, 1, 1, 1, 2, 1, 1, 1, 37, 1, 1, 1, 47, 1, 41, 43, 1, 1, 1, 1, 1, 1, 3, 83, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 71, 1, 1, 2, 1, 67, 1, 1, 1, 73, 1, 79, 1, 1, 1, 103, 101
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Blue code, A193231, is a self-inverse permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A193231(n)) = A000523(n), from which it immediately follows that A193231 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A193231(n)), for n >= 1.

Crossrefs

Programs

  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    v369043 = LCMtransform(vector(up_to,i,A193231(i)));
    A369043(n) = v369043[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A193231(n)} / lcm {1..A193231(n-1)}.
a(n) = A014963(A193231(n)). [See comments.]
For n >= 1, Product_{d|n} a(A193231(d)) = n. [Implied by above.]