A369061 Numbers k such that k + k'*2 is equal to a partial sum of primorial numbers (a term of A143293), where k' stands for the arithmetic derivative of k, A003415.
1, 7, 37, 99, 2557, 32587, 543097, 10242787, 232889539, 146710424885, 207263519017
Offset: 1
Keywords
Examples
For 99, A068719(99) = 99 + 99'*2 = 99 + 75*2 = 249 = 1 + 2 + 6 + 30 + 210 = A143293(4), therefore 99 is included in this sequence. For 2557, which is a prime, 2557 + 2557' * 2 = 2557+2 = 2559 = 1 + 2 + 6 + 30 + 210 + 2310 = A143293(5), therefore 2557 is included in this sequence.
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A068719(n) = (n+2*A003415(n)); A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; isA369061(n) = (1==A276150(A276086(A068719(n))));
Comments