A369079 Number of partitions of [n] such that the element sum of each block is odd.
1, 1, 1, 2, 4, 10, 28, 96, 320, 1436, 5556, 28768, 129600, 730864, 3756936, 23286784, 132872192, 910013776, 5679982288, 42235062784, 286769980416, 2281079563104, 16732506817280, 141975748567040, 1115928688967680, 10077454948692288, 84383735744758464
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(2) = 1: 12. a(3) = 2: 12|3, 1|23. a(4) = 4: 124|3, 12|34, 14|23, 1|234. a(5) = 10: 12345, 124|3|5, 12|34|5, 12|3|45, 14|23|5, 1|234|5, 1|23|45, 14|25|3, 1|245|3, 1|25|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..592
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, x, y) option remember; `if`(n=0, `if`(y=0, 1, 0), `if`(n::odd, b(n-1, x+1, y)+`if`(x>0, x*b(n-1, x-1, y+1), 0)+ `if`(y>0, y*b(n-1, x+1, y-1), 0), b(n-1, x, y+1)+(x+y)*b(n-1, x, y))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..26); # second Maple program: b:= proc(x, y) option remember; `if`(x+y=0, 1, add(`if`(j::odd, binomial(x-1, j-1)*add( b(x-j, y-i)*binomial(y, i), i=0..y), 0), j=1..x)) end: a:= n-> (h-> b(n-h, h))(iquo(n, 2)): seq(a(n), n=0..26);
Comments