A369080 Number of permutations of [n] such that the element sum of each cycle is odd.
1, 1, 1, 2, 6, 36, 180, 1080, 7560, 75600, 680400, 6804000, 74844000, 1047816000, 13621608000, 190702512000, 2860537680000, 51489678240000, 875324530080000, 15755841541440000, 299360989287360000, 6585941764321920000, 138304777050760320000, 3042705095116727040000
Offset: 0
Keywords
Examples
a(0) = 1: the empty permutation. a(1) = 1: (1). a(2) = 1: (12). a(3) = 2: (12)(3), (1)(23). a(4) = 6: (124)(3), (142)(3), (12)(34), (14)(23), (1)(234), (1)(243).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(x, y) option remember; `if`(x+y=0, 1, add( `if`(j::odd, binomial(x-1, j-1)*add((i+j-1)!* b(x-j, y-i)*binomial(y, i), i=0..y), 0), j=1..x)) end: a:= n-> (h-> b(n-h, h))(iquo(n, 2)): seq(a(n), n=0..23); # second Maple program: b:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>, <-1|1|0|0|1>>^n. <<1, 2, 3, 6, 5>>)[1, 1]: a:= proc(n) option remember; `if`(n<2, 1, a(n-1)*b(n-2)) end: seq(a(n), n=0..23);
Comments