cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369082 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(3*A(x)^2 + A(-x)^2)/4.

Original entry on oeis.org

1, 1, 1, 3, 4, 15, 22, 91, 140, 612, 969, 4389, 7084, 32890, 53820, 254475, 420732, 2017356, 3362260, 16301164, 27343888, 133767543, 225568798, 1111731933, 1882933364, 9338434700, 15875338990, 79155435870, 134993766600, 676196049060, 1156393243320, 5815796869995
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2024

Keywords

Comments

Equals the interleaving of sequences A002293 and A006632.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 4*x^4 + 15*x^5 + 22*x^6 + 91*x^7 + 140*x^8 + 612*x^9 + 969*x^10 + 4389*x^11 + 7084*x^12 + ...
RELATED SERIES.
We can see from the expansion of A(x)^2, which begins
A(x)^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 15*x^4 + 44*x^5 + 91*x^6 + 280*x^7 + 612*x^8 + 1938*x^9 + 4389*x^10 + 14168*x^11 + 32890*x^12 + ...
that the odd bisection of A(x) is derived from the even bisection of A(x)^2:
(A(x) - A(-x))/2 = x + 3*x^3 + 15*x^5 + 91*x^7 + 612*x^9 + ...
(A(x)^2 + A(-x)^2)/2 = 1 + 3*x^2 + 15*x^4 + 91*x^6 + 612*x^8 + ...
and the even bisection of A(x) is derived from the odd bisection of A(x)^2:
(A(x) + A(-x))/2 = 1 + x^2 + 4*x^4 + 22*x^6 + 140*x^8 + 969*x^10 + ...
(A(x)^2 - A(-x)^2)/2 = 2*x + 8*x^3 + 44*x^5 + 280*x^7 + 1938*x^9 + ...
so that (A(x) + A(-x))/2 = 1 + (1/2)*x * (A(x)^2 - A(-x)^2)/2.
		

Crossrefs

Programs

  • PARI
    {a(n) = if(n%2==0, binomial(2*n, n/2)/(3*n/2 + 1), 3*binomial(2*n+1,n\2)/(2*n+1))}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x);
    A = 1 + x*(A^2 + B^2)/2 + (1/2)*x*(A^2 - B^2)/2 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A); A = (1/x)*serreverse( (sqrt(1 + 4*x - 4*x^2 +x^2*O(x^n)) - (1 - 6*x + 4*x^2))/8 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1.a) A(x) = 1 + x*(3*A(x)^2 + A(-x)^2)/4.
(1.b) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + (1/2)*x*(A(x)^2 - A(-x)^2)/2.
(2.a) (A(x) + A(-x))/2 = 1 + (1/2)*x*(A(x)^2 - A(-x)^2)/2.
(2.b) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2.
(2.c) (A(x) + A(-x))/2 = 1/(1 - x*(A(x) - A(-x))/2).
(2.d) (A(x) + A(-x))/2 = F(x^2) where F(x) = 1 + x*F(x)^4 (cf. A002293).
(2.e) (A(x) - A(-x))/2 = x*F(x^2)^3 where F(x) = 1 + x*F(x)^4 (cf. A006632).
(3.a) A(x) = (1 - sqrt(1 - 4*x + 2*x*A(-x) + x^2*A(-x)^2))/x.
(3.b) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2))/(2*x).
(4.a) 0 = (1+4*x) - (1+6*x)*A(x) + (3+4*x)*x*A(x)^2 - 3*x^2*A(x)^3 + x^3*A(x)^4.
(4.b) x = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - (1 - 6*x*A(x) + 4*x^2*A(x)^2))/8.
(5.a) A(x) = (1/x)*Series_Reversion( (sqrt(1 + 4*x - 4*x^2) - (1 - 6*x + 4*x^2))/8 ).
(5.b) (A(x) + A(-x))/2 = (1/x)*Series_Reversion( x/C(x^2) ) = where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan sequence (A000108).
(5.c) (A(x) - A(-x))/2 = Series_Reversion( x*D(-x^2)^3 ) where D(x) = 1 + x*D(x)^3 (cf. A001764).
(6.a) a(2*n) = binomial(4*n, n)/(3*n + 1) for n >= 0.
(6.b) a(2*n+1) = 3*binomial(4*n+3,n)/(4*n+3) for n >= 0.
Showing 1-1 of 1 results.