cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369086 Expansion of g.f. A(x) satisfying 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.

Original entry on oeis.org

1, 2, 2, 12, 22, 144, 314, 2094, 4980, 33962, 85104, 589050, 1526520, 10690958, 28357414, 200513838, 540848844, 3855418084, 10529575602, 75589847732, 208400923746, 1505463570864, 4180703306104, 30372614867534, 84817986727644, 619420989037864, 1737266065061962
Offset: 0

Views

Author

Paul D. Hanna, Jan 22 2024

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 2*x^2 + 12*x^3 + 22*x^4 + 144*x^5 + 314*x^6 + 2094*x^7 + 4980*x^8 + 33962*x^9 + 85104*x^10 + 589050*x^11 + 1526520*x^12 + ...
		

Crossrefs

Cf. A354645.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff(2 - sum(m=-#A, #A, (-x)^(m*(m-1)/2) * Ser(A)^m ), #A-1)); H=A; A[n+1]}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.
(2) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) 2 = Product_{n>=1} (1 + (-x)^(n-1)*A(x)) * (1 + (-x)^n/A(x)) * (1 - (-x)^n), by the Jacobi Triple Product identity.