A369093 Numbers k >= 1 such that sigma(k) divides the sum of the triangular numbers T(k) and T(k+1), where sigma(k) = A000203(k) is the sum of the divisors of k.
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1
Examples
3 is a term since (3+1)^2 = 4^2 = 16 is divisible by sigma(3) = 4. 35 is a term since (35+1)^2 = 36^2 = 1296 is divisible by sigma(35) = 48. 42 is not a term since (42+1)^2 = 43^2 = 1849 is not divisible by sigma(42) = 96.
Programs
-
Maple
isA369093 := proc(k) if modp((k+1)^2, numtheory[sigma](k)) = 0 then true; else false; end if; end proc: A369093 := proc(n) option remember ; if n = 1 then 1; else for a from procname(n-1)+1 do if isA369093(a) then return a; end if; end do: end if; end proc: [seq(A369093(n),n=1..100)] ; # R. J. Mathar, Jan 18 2024
-
PARI
isok(n) = my(x=(n+1)^2,y=sigma(n));!(x%y);
Comments