A369105 Primes p such that p+2 has only prime factors congruent to -1 modulo 4.
5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97, 101, 127, 131, 137, 139, 149, 197, 199, 211, 229, 241, 251, 269, 277, 281, 307, 359, 379, 397, 421, 439, 461, 467, 487, 499, 521, 569, 571, 587, 601, 617, 619, 631, 641, 647, 691, 709, 719, 727, 751, 757, 787, 809, 811
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- E. Bujalance, F. J. Cirre, and M. D. E. Conder, Bounds on the orders of groups of automorphisms of a pseudo-real surface of given genus, Journal of the London Mathematical Society, Volume 101, Issue 2, p. 877-906, (2019).
- Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 1.
Programs
-
Mathematica
Select[Prime[Range[150]], PrimeQ[f=First/@FactorInteger[#+2]] == Table[True,{j,PrimeNu[#+2]}] && Mod[f,4] == Table[3, {m,PrimeNu[#+2]}] &]
-
PARI
is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;}; lista(pmax) = forprime(p = 3, pmax, if(is1(p+2), print1(p, ", "))); \\ Amiram Eldar, Jun 03 2024
Comments