cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369105 Primes p such that p+2 has only prime factors congruent to -1 modulo 4.

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97, 101, 127, 131, 137, 139, 149, 197, 199, 211, 229, 241, 251, 269, 277, 281, 307, 359, 379, 397, 421, 439, 461, 467, 487, 499, 521, 569, 571, 587, 601, 617, 619, 631, 641, 647, 691, 709, 719, 727, 751, 757, 787, 809, 811
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Comments

Jones and Zvonkin call these primes BCC primes, where BCC stands for Bujalance, Cirre, and Conder.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]], PrimeQ[f=First/@FactorInteger[#+2]] == Table[True,{j,PrimeNu[#+2]}] && Mod[f,4] == Table[3, {m,PrimeNu[#+2]}] &]
  • PARI
    is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;};
    lista(pmax) = forprime(p = 3, pmax, if(is1(p+2), print1(p, ", "))); \\ Amiram Eldar, Jun 03 2024

A369107 a(n) is the number of numbers less than or equal to 10^n that are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

4, 26, 201, 1680, 14902, 135124, 1243370, 11587149, 108941388, 1031330156, 9816605847
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Join[{1}, Select[Range[10^n], PrimeQ[f = First/@FactorInteger[#]] == Table[True, {j,PrimeNu[#]}] && Mod[f,4] == Table[3, {m,PrimeNu[#]}] && #<=10^n &]]]; Array[a, 10]
  • PARI
    is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;};
    lista(nmax) = {my(c = 0, pow = 10, n = 1, nm = nmax + 1); forstep(k = 1, 10^nmax + 1, 2, if(k > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(is1(k), c++));} \\ Amiram Eldar, Jun 03 2024

Extensions

a(11) from Amiram Eldar, Jun 03 2024

A369108 a(n) is the number of numbers less than or equal to 10^n that are divisible only by primes congruent to 1 mod 4.

Original entry on oeis.org

2, 15, 123, 1074, 9623, 87882, 814183, 7618317, 71838469, 681591775, 6499182987
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Join[{1}, Select[Range[10^n], PrimeQ[f = First/@FactorInteger[#]] == Table[True, {j,PrimeNu[#]}] && Mod[f,4] == Table[1, {m,PrimeNu[#]}] && #<=10^n &]]]; Array[a, 9]
  • PARI
    is1(n) = n % 4 == 1 && factorback(factor(n)[, 1] % 4) == 1 \\ Charles R Greathouse IV at A004613
    lista(nmax) = {my(c = 0, pow = 10, n = 1, nm = nmax + 1); for(k = 1, 10^nmax + 1, if(k > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(is1(k), c++));} \\ Amiram Eldar, Jun 03 2024

Extensions

a(10)-a(11) from Amiram Eldar, Jun 03 2024

A369109 a(n) is the number of pairs of twin primes p and p+2 both less than or equal to 10^n such that p is congruent to 1 modulo 4.

Original entry on oeis.org

1, 4, 19, 105, 604, 4046, 29482, 220419, 1712731, 13706592, 112196635, 935286453
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Select[Range[10^n-2], PrimeQ[#] && PrimeQ[#+2] && Mod[#,4] == 1 &]]; Array[a,10]
  • PARI
    lista(nmax) = {my(prev = 2, c = 0, pow = 10, n = 1, nm = nmax + 1); forprime(p = 3, , if(p > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(prev % 4 == 1 && p == prev + 2, c++); prev = p);} \\ Amiram Eldar, Jun 03 2024

Extensions

a(11)-a(12) from Amiram Eldar, Jun 03 2024
Showing 1-4 of 4 results.