cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369126 Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^4) ).

Original entry on oeis.org

1, 4, 22, 140, 970, 7104, 54096, 424008, 3398224, 27721024, 229410328, 1921308272, 16253502512, 138683973120, 1192142838656, 10314377770720, 89749921081280, 784913791336192, 6895599255571840, 60825440855493376, 538507243041624864, 4783482648574893056
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(4*n-4*k+4,n-4*k).
D-finite with recurrence -3*(3*n+2)*(3*n+4)*(1746*n-6043)*(n+1)*a(n) +4*(519282*n^4 -1632448*n^3 +319539*n^2 +77803*n-72516)*a(n-1) +16*(-1055610*n^4 +5245655*n^3 -8423433*n^2 +5306215*n-1129842)*a(n-2) +96*(n-2) *(150552*n^3 -673240*n^2 +868987*n -301954)*a(n-3) -64*(n-2) *(n-3) *(174726*n^2 -528221*n +220460)*a(n-4) -512*(7353*n-3733)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 24 2024

A369157 Expansion of (1/x) * Series_Reversion( x / ((1+x)^5-x^5) ).

Original entry on oeis.org

1, 5, 35, 285, 2530, 23750, 231850, 2329850, 23940475, 250394375, 2656849375, 28529354375, 309445377750, 3385369628750, 37312228370000, 413913023212500, 4617886656665625, 51781448191328125, 583266654383859375, 6596645477096428125, 74881064169289121875
Offset: 0

Views

Author

Seiichi Manyama, Jan 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^5-x^5))/x)
    
  • PARI
    a(n) = sum(k=0, n\5, (-1)^k*binomial(n+1, k)*binomial(5*n-5*k+5, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+1,k) * binomial(5*n-5*k+5,n-5*k).
Showing 1-2 of 2 results.