A369134 Triangle read by rows: T(n, k) = (-1)^(n + 1)*L(n) * M(n, k) where M is the inverse of the matrix generated by the triangle A368846 and L(n) is the lcm of the denominators of the terms in the n-th row of M.
-1, 0, 1, 0, 0, -1, 0, 0, 7, 3, 0, 0, -14, -6, -1, 0, 0, 693, 297, 55, 5, 0, 0, -30030, -12870, -2431, -260, -15, 0, 0, 4150146, 1778634, 337480, 37310, 2625, 105, 0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21
Offset: 0
Examples
[0] [-1] [1] [0, 1] [2] [0, 0, -1] [3] [0, 0, 7, 3] [4] [0, 0, -14, -6, -1] [5] [0, 0, 693, 297, 55, 5] [6] [0, 0, -30030, -12870, -2431, -260, -15] [7] [0, 0, 4150146, 1778634, 337480, 37310, 2625, 105] [8] [0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21] . For n = 5: (0 + 0 + 693 + 297 + 55 + 5) / 13860 = 5 / 66 = Bernoulli(10).
Links
- Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
Crossrefs
Programs
-
Mathematica
A368846[n_, k_] := If[k == 0, Boole[n == 0], (-1)^(n + k) 2 Binomial[2 k - 1, n] Binomial[2 n + 1, 2 k]]; Map[# LCM @@ Denominator[#]&, MapIndexed[(-1)^First[#2] Take[#, First[#2]]&, Inverse[PadRight[Table[A368846[n, k], {n, 0, 10}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 15 2024 *)
-
SageMath
M = matrix(ZZ, 32, 32, A368846).inverse() def T(n, k): L = (-1)**(n + 1)*lcm(M[n][k].denominator() for k in range(n + 1)) return L * M[n][k] for n in range(9): print([T(n, k) for k in range(n + 1)])
Formula
(Sum_{k=0..n} T(n, k)) / A369135(n) = Bernoulli(2*n).
T(n, 2) / T(n, 3) = 7 / 3 for n >= 3.
Comments