cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369169 Terms k of A025487 such that A000005(k) = A000688(k).

Original entry on oeis.org

1, 16, 1296, 23040, 810000, 7257600, 16934400, 283852800, 1437004800, 1944810000, 13970880000, 30735936000, 232475443200, 852409958400, 1765360396800, 3269185920000, 7192209024000, 8029628006400, 28473963210000, 97893956160000, 181803061440000, 1086822696960000
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

Since both A000005(k) and A000688(k) depend only on the prime signature of k (A124832), if k is a term of this sequence then every number m such that A046523(m) = k is a term of A369168.
From David A. Corneth, Jan 15 2024: (Start)
16 | a(n) for n > 1.
This sequence contains A002110(n)^4. (End)

Examples

			16 is in the sequence as 16 has 5 divisors (1, 2, 4, 8, 16) and 5 factorizations into prime powers (16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2).
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Intersection of A025487 and A369168.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; Select[lps, DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &]