A369197 Number of labeled connected loop-graphs with n vertices, none isolated, and at most n edges.
1, 1, 3, 13, 95, 972, 12732, 202751, 3795864, 81609030, 1980107840, 53497226337, 1592294308992, 51758060711792, 1824081614046720, 69272000503031475, 2819906639193992192, 122488526636380368714, 5654657850859704139776, 276462849597009068108405, 14270030377126199463936000
Offset: 0
Keywords
Examples
The a(0) = 0 through a(3) = 13 loop-graphs (loops shown as singletons): . {{1}} {{1,2}} {{1,2},{1,3}} {{1},{1,2}} {{1,2},{2,3}} {{2},{1,2}} {{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{1,3},{2,3}} {{2},{1,2},{1,3}} {{2},{1,2},{2,3}} {{2},{1,3},{2,3}} {{3},{1,2},{1,3}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + 3*t/2 - 3*t^2/4 + 1 - x))} \\ Andrew Howroyd, Feb 02 2024
Formula
Logarithmic transform of A368927.
From Andrew Howroyd, Feb 02 2024: (Start)
E.g.f.: log(1/(1-T(x)))/2 + 3*T(x)/2 - 3*T(x)^2/4 + 1 - x, where T(x) is the e.g.f. of A000169. (End)
Extensions
a(0) changed to 1 and a(7) onwards from Andrew Howroyd, Feb 02 2024