A369199 Irregular triangle read by rows where T(n,k) is the number of labeled loop-graphs covering n vertices with k edges.
1, 0, 1, 0, 1, 3, 1, 0, 0, 6, 17, 15, 6, 1, 0, 0, 3, 46, 150, 228, 206, 120, 45, 10, 1, 0, 0, 0, 45, 465, 1803, 3965, 5835, 6210, 4955, 2998, 1365, 455, 105, 15, 1, 0, 0, 0, 15, 645, 5991, 27364, 79470, 165555, 264050, 334713, 344526, 291200, 202860, 116190, 54258, 20349, 5985, 1330, 210, 21, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 3 1 0 0 6 17 15 6 1 0 0 3 46 150 228 206 120 45 10 1 Row n = 3 counts the following loop-graphs (loops shown as singletons): {1,23} {1,2,3} {1,2,3,12} {1,2,3,12,13} {1,2,3,12,13,23} {2,13} {1,2,13} {1,2,3,13} {1,2,3,12,23} {3,12} {1,2,23} {1,2,3,23} {1,2,3,13,23} {12,13} {1,3,12} {1,2,12,13} {1,2,12,13,23} {12,23} {1,3,23} {1,2,12,23} {1,3,12,13,23} {13,23} {1,12,13} {1,2,13,23} {2,3,12,13,23} {1,12,23} {1,3,12,13} {1,13,23} {1,3,12,23} {2,3,12} {1,3,13,23} {2,3,13} {1,12,13,23} {2,12,13} {2,3,12,13} {2,12,23} {2,3,12,23} {2,13,23} {2,3,13,23} {3,12,13} {2,12,13,23} {3,12,23} {3,12,13,23} {3,13,23} {12,13,23}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1560 (rows 0..20)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}],Length[Union@@#]==n&]],{n,0,5},{k,0,Binomial[n+1,2]}]
-
PARI
T(n)={[Vecrev(p) | p<-Vec(serlaplace(exp(-x + O(x*x^n))*(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!)))) ]} { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024
Formula
E.g.f.: exp(-x) * (Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024