A369200 Number of unlabeled loop-graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).
1, 1, 3, 7, 18, 43, 112, 282, 740, 1940, 5182, 13916, 37826, 103391, 284815, 788636, 2195414, 6137025, 17223354, 48495640, 136961527, 387819558, 1100757411, 3130895452, 8922294498, 25470279123, 72823983735, 208515456498, 597824919725, 1716072103910, 4931540188084
Offset: 0
Keywords
Examples
Representatives of the a(1) = 1 through a(4) = 18 loop-graphs (loops shown as singletons): {{1}} {{1,2}} {{1},{2,3}} {{1,2},{3,4}} {{1},{2}} {{1,2},{1,3}} {{1},{2},{3,4}} {{1},{1,2}} {{1},{2},{3}} {{1},{1,2},{3,4}} {{1},{2},{1,3}} {{1},{2,3},{2,4}} {{1},{1,2},{1,3}} {{1},{2},{3},{4}} {{1},{1,2},{2,3}} {{1,2},{1,3},{1,4}} {{1,2},{1,3},{2,3}} {{1,2},{1,3},{2,4}} {{1},{2},{3},{1,4}} {{1},{2},{1,3},{1,4}} {{1},{2},{1,3},{2,4}} {{1},{2},{1,3},{3,4}} {{1},{1,2},{1,3},{1,4}} {{1},{1,2},{1,3},{2,4}} {{1},{1,2},{2,3},{2,4}} {{1},{1,2},{2,3},{3,4}} {{1},{2,3},{2,4},{3,4}} {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
This is the covering case of A369145.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
Formula
First differences of A369145.
Extensions
a(7) onwards from Andrew Howroyd, Feb 02 2024
Comments