A369201 Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).
0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0
Keywords
Examples
The a(0) = 0 through a(6) = 7 simple graphs: . . . . . {{12}{13}{14}{23}{24}} {{12}{13}{14}{15}{23}{24}} {{12}{13}{14}{15}{23}{45}} {{12}{13}{14}{23}{24}{34}} {{12}{13}{14}{23}{24}{35}} {{12}{13}{14}{23}{24}{56}} {{12}{13}{14}{23}{25}{45}} {{12}{13}{14}{25}{35}{45}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Gus Wiseman, The a(6) = 7 unlabeled non-choosable graphs with 6 vertices and 6 edges.
Crossrefs
For labeled set-systems we have A368600.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]
Extensions
a(25) onwards from Andrew Howroyd, Feb 02 2024
Comments