cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369504 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x^3)^2 ).

Original entry on oeis.org

1, 4, 22, 142, 1005, 7546, 59033, 475962, 3927204, 33001024, 281449964, 2429922400, 21196031340, 186521336460, 1653830553417, 14761130834428, 132516050272100, 1195778542160992, 10839917478886459, 98671228898404032, 901509955793840923
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x^3)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+2, k)*binomial(4*n-2*k+4, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(4*n-2*k+4,n-3*k).

A370285 Coefficient of x^n in the expansion of ( (1+x)^2 + x^3 )^n.

Original entry on oeis.org

1, 2, 6, 23, 94, 392, 1659, 7107, 30734, 133880, 586576, 2582142, 11411371, 50597900, 224986467, 1002867878, 4479814606, 20049099908, 89878609344, 403521966942, 1814102538624, 8165526187128, 36794746597494, 165968135843522, 749314496125451, 3385881647958442
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2024

Keywords

Crossrefs

Similar to A082759.

Programs

  • Maple
    a := n -> binomial(2*n, n) * hypergeom([(1-n)/3, (2-n)/3, -n/3], [1/2-n, n+1], 27/4):
    seq(simplify(a(n)), n = 0..25);  # Peter Luschny, Jan 04 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(2*n-2*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(2*n-2*k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 + x^3) ). See A369212.

A371426 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 - x^3) ).

Original entry on oeis.org

1, 2, 5, 13, 34, 87, 212, 471, 858, 740, -3674, -29291, -141951, -576379, -2111677, -7161898, -22646026, -66408560, -176815194, -403468266, -641064024, 337909918, 9269952852, 55908644837, 256989808831, 1033152002312, 3792152422259, 12903091079930, 40749582818221
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2-x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n+1, k)*binomial(2*n-2*k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+1,k) * binomial(2*n-2*k+2,n-3*k).
Showing 1-3 of 3 results.