cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369238 Tetraprime numbers differing by more than 3 from any other squarefree number.

Original entry on oeis.org

72474, 106674, 193026, 237522, 261478, 308649, 342066, 370785, 391674, 491322, 604878, 865974, 885477, 931022, 938598, 1005630, 1070727, 1152822, 1186926, 1206822, 1289978, 1306878, 1363326, 1371774, 1392726, 1412918, 1455249, 1528111, 1634227, 1654678, 1688478
Offset: 1

Views

Author

Massimo Kofler, Jan 19 2024

Keywords

Comments

Tetraprimes are the product of four distinct prime numbers (cf. A046386).

Examples

			72474 = 2 * 3 * 47 * 257 is a tetraprime; 72471 = 3 * 7^2 * 17 * 29, 72472 = 2^3 * 9059, 72473 = 23^2 * 137, 72475 = 5^2 * 13 * 223, 72476 = 2^2 * 18119, 72477 = 3^2 * 8053 are all nonsquarefree numbers, so 72474 is a term.
		

Crossrefs

Cf. A046386, A013929. Subsequence of A268332.

Programs

  • Maple
    N:= 3*10^6: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3 .. N/30,2)]): nP:= nops(P):
    filter:= proc(x) not ormap(numtheory:-issqrfree, [x-3,x-2,x-1,x+1,x+2,x+3]) end proc:
    R:= NULL:
    for i1 from 1 to nP do
      r1:= P[i1];
      for i2 from 1 to i1-1 do
        r2:= r1 * P[i2]; if r2 > N/6 then break fi;
        for i3 from 1 to i2-1 do
          r3:= r2 * P[i3]; if r3 > N/2 then break fi;
          for i4 from 1 to i3-1 do
            r:= r3 * P[i4];
            if r > N then break fi;
            if filter(r) then R:= R,r; fi
    od od od od:
    sort([R]); # Robert Israel, Jan 19 2025
  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 19 2024 *)