A369238 Tetraprime numbers differing by more than 3 from any other squarefree number.
72474, 106674, 193026, 237522, 261478, 308649, 342066, 370785, 391674, 491322, 604878, 865974, 885477, 931022, 938598, 1005630, 1070727, 1152822, 1186926, 1206822, 1289978, 1306878, 1363326, 1371774, 1392726, 1412918, 1455249, 1528111, 1634227, 1654678, 1688478
Offset: 1
Keywords
Examples
72474 = 2 * 3 * 47 * 257 is a tetraprime; 72471 = 3 * 7^2 * 17 * 29, 72472 = 2^3 * 9059, 72473 = 23^2 * 137, 72475 = 5^2 * 13 * 223, 72476 = 2^2 * 18119, 72477 = 3^2 * 8053 are all nonsquarefree numbers, so 72474 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..5415
Programs
-
Maple
N:= 3*10^6: # for terms <= N P:= select(isprime,[2,seq(i,i=3 .. N/30,2)]): nP:= nops(P): filter:= proc(x) not ormap(numtheory:-issqrfree, [x-3,x-2,x-1,x+1,x+2,x+3]) end proc: R:= NULL: for i1 from 1 to nP do r1:= P[i1]; for i2 from 1 to i1-1 do r2:= r1 * P[i2]; if r2 > N/6 then break fi; for i3 from 1 to i2-1 do r3:= r2 * P[i3]; if r3 > N/2 then break fi; for i4 from 1 to i3-1 do r:= r3 * P[i4]; if r > N then break fi; if filter(r) then R:= R,r; fi od od od od: sort([R]); # Robert Israel, Jan 19 2025
-
Mathematica
f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 19 2024 *)
Comments