A369269
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^3 ).
Original entry on oeis.org
1, 2, 7, 33, 173, 962, 5586, 33498, 205846, 1289386, 8202247, 52845855, 344129832, 2261377872, 14976646685, 99863119809, 669860309538, 4517037850220, 30603008068997, 208211448723097, 1421986458302466, 9745007758311114, 66993247112160800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3)^3)/x)
-
a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369299
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x^3)^3 ).
Original entry on oeis.org
1, 1, 2, 8, 29, 105, 417, 1719, 7181, 30603, 132736, 582790, 2585352, 11575613, 52237278, 237328704, 1084701387, 4983867447, 23007263941, 106658256768, 496336303014, 2317687534865, 10856677523580, 51001805706435, 240225121539000, 1134240896062656, 5367428039668751
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x^3)^3)/x)
-
a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369270
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+x^3)^3 ).
Original entry on oeis.org
1, 3, 15, 94, 657, 4902, 38233, 307953, 2541831, 21386810, 182754162, 1581699162, 13836248406, 122139271098, 1086638457429, 9733419373534, 87707244737511, 794505072627735, 7231017033165776, 66089527981542462, 606340568510978940, 5582088822346925210
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+x^3)^3)/x)
-
a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369266
Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^3)^2 ).
Original entry on oeis.org
1, 1, 2, 7, 24, 84, 313, 1209, 4769, 19166, 78253, 323570, 1352122, 5701467, 24229122, 103663575, 446163435, 1930390329, 8391341664, 36630504952, 160509484616, 705750073063, 3112865367660, 13769327908980, 61066953746400, 271488240652950, 1209671359828154
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^3)^2)/x)
-
a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
Showing 1-4 of 4 results.