A369288 Array read by antidiagonals: A(n,k) = the hypergraph Catalan number C_k(n), n >= 0, k >= 1.
1, 1, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 20, 57, 14, 1, 1, 70, 860, 678, 42, 1, 1, 252, 15225, 57200, 9270, 132, 1, 1, 924, 299880, 7043750, 5344800, 139968, 429, 1, 1, 3432, 6358044, 1112865264, 6327749750, 682612800, 2285073, 1430, 1, 1, 12870, 141858288, 203356067376, 11126161436292, 10411817136000, 118180104000, 39871926, 4862
Offset: 0
Examples
Array begins: n/k| 1 2 3 4 5 ... ---+----------------------------------------------------------------- 0 | 1 1 1 1 1 ... 1 | 1 1 1 1 1 ... 2 | 2 6 20 70 252 ... 3 | 5 57 860 15225 299880 ... 4 | 14 678 57200 7043750 1112865264 ... 5 | 42 9270 5344800 6327749750 11126161436292 ... 6 | 132 139968 682612800 10411817136000 255654847841227632 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Paul E. Gunnells, Generalized Catalan numbers from hypergraphs, arXiv:2102.05121 [math.CO], 2021.
Crossrefs
Programs
-
PARI
\\ here L(k,n) is k-th column of A060540 as g.f. L(k,n)={sum(n=1, n, (n*k)!*x^n/(k!^n*n!), O(x*x^n))} HypCatColGf(k,n)={my(p=L(k,n)); 1 + subst(p, x, serreverse(x^2/p))} M(n,m=n+1)={Mat(vector(m, k, Col(HypCatColGf(k,n))))} { my(A=M(7,5)); for(i=1, matsize(A)[1], print(A[i,])) }
Formula
G.f. of column k: 1 + B_k(Series_Reversion(x^2/B_k(x))) where B_k(x) is the g.f. of column k of A060540.
Comments