cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369288 Array read by antidiagonals: A(n,k) = the hypergraph Catalan number C_k(n), n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 20, 57, 14, 1, 1, 70, 860, 678, 42, 1, 1, 252, 15225, 57200, 9270, 132, 1, 1, 924, 299880, 7043750, 5344800, 139968, 429, 1, 1, 3432, 6358044, 1112865264, 6327749750, 682612800, 2285073, 1430, 1, 1, 12870, 141858288, 203356067376, 11126161436292, 10411817136000, 118180104000, 39871926, 4862
Offset: 0

Views

Author

Andrew Howroyd, Feb 01 2024

Keywords

Comments

Definition (from A362167): Let Trees(n) be the set of unlabeled trees on n vertices (see A000055). Let T be in Trees(n+1), and let v be a vertex of T. Then a (k,T)-tour beginning at v is a walk that begins and ends at v and traverses each edge of T exactly 2*k times. We denote by N(k,T)(v) the number of (k,T)-tours beginning at v.
The hypergraph Catalan numbers C_k(n) are defined by C_k(n) = Sum_{trees T in T(n+1)} Sum_{vertices v in T} N(k,T)(v)/|Aut(T)|, where Aut(T) denotes the automorphism group of the tree T.
See the Gunnells reference for a full definition and additional information.

Examples

			Array begins:
n/k|   1       2            3              4                  5 ...
---+-----------------------------------------------------------------
 0 |   1       1            1              1                  1 ...
 1 |   1       1            1              1                  1 ...
 2 |   2       6           20             70                252 ...
 3 |   5      57          860          15225             299880 ...
 4 |  14     678        57200        7043750         1112865264 ...
 5 |  42    9270      5344800     6327749750     11126161436292 ...
 6 | 132  139968    682612800 10411817136000 255654847841227632 ...
  ...
		

Crossrefs

Row 2 is A000984.

Programs

  • PARI
    \\ here L(k,n) is k-th column of A060540 as g.f.
    L(k,n)={sum(n=1, n, (n*k)!*x^n/(k!^n*n!), O(x*x^n))}
    HypCatColGf(k,n)={my(p=L(k,n)); 1 + subst(p, x, serreverse(x^2/p))}
    M(n,m=n+1)={Mat(vector(m, k, Col(HypCatColGf(k,n))))}
    { my(A=M(7,5)); for(i=1, matsize(A)[1], print(A[i,])) }

Formula

G.f. of column k: 1 + B_k(Series_Reversion(x^2/B_k(x))) where B_k(x) is the g.f. of column k of A060540.