A369292 Array read by downward antidiagonals: A(n,k) = -A(n-1,k) + (k+1)*A(n-1,k+1) + A(n-1,k+2) with A(0,k) = 1, n >= 0, k >= 0.
1, 1, 1, 1, 2, 4, 1, 3, 8, 18, 1, 4, 14, 42, 108, 1, 5, 22, 84, 276, 780, 1, 6, 32, 150, 612, 2160, 6600, 1, 7, 44, 246, 1212, 5220, 19560, 63840, 1, 8, 58, 378, 2196, 11280, 50880, 200760, 693840, 1, 9, 74, 552, 3708, 22260, 118560, 556920, 2299920, 8361360
Offset: 0
Examples
Array begins: ===================================================== n\k| 0 1 2 3 4 5 6 ... ---+------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 2 3 4 5 6 7 ... 2 | 4 8 14 22 32 44 58 ... 3 | 18 42 84 150 246 378 552 ... 4 | 108 276 612 1212 2196 3708 5916 ... 5 | 780 2160 5220 11280 22260 40800 70380 ... 6 | 6600 19560 50880 118560 252120 496920 919200 ... ...
Programs
-
PARI
A(m,n=m)={my(r=vectorv(m+1), v=vector(n+2*m+1,k,1)); r[1] = v[1..n+1]; for(i=1, m, v=vector(#v-2, k, -v[k] + k*v[k+1] + v[k+2]); r[1+i] = v[1..n+1]); Mat(r)} { A(6) } \\ Andrew Howroyd, Jan 24 2024