A369301 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 * (1-x^3)^3 ).
1, 3, 15, 94, 657, 4902, 38236, 308025, 2542965, 21401780, 182934144, 1583745114, 13858675065, 122379042879, 1089156646584, 9759520978270, 87975115569873, 797233088237190, 7258632128721117, 66367727370376632, 609132332475784548, 5610015849998778144
Offset: 0
Keywords
Links
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3*(1-x^3)^3)/x)
-
PARI
a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
Formula
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(4*n-3*k+2,n-3*k).
a(n) = (1/(n+1)) * [x^n] 1/( (1-x)^3 * (1-x^3)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024