A369310 The number of divisors d of n such that gcd(d, n/d) is a powerful number.
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 5, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e <= 3, 2, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> if(x <= 3, 2, x-1), factor(n)[, 2]));
-
Python
from math import prod from sympy import factorint def A369310(n): return prod(2 if e<=2 else e-1 for e in factorint(n).values()) # Chai Wah Wu, Jan 19 2024
Formula
Multiplicative with a(p^e) = 2 if e <= 3, and e-1 otherwise.
Dirichlet g.f.: zeta(s)^2 * f(s), where f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^4) = 0.66922021803510257394...,
f'(1)/f(1) = 2 * Sum_{p prime} (p^2-2) * log(p) / (p^4 - p^2 + 1) = 0.81150060034711480230..., and gamma is Euler's constant (A001620).
Comments