cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369321 T(n,k) is the number of length-n weak ascent sequences (prefixed with a zero) with k weak ascents, triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 9, 14, 0, 0, 0, 5, 59, 42, 0, 0, 0, 1, 92, 342, 132, 0, 0, 0, 0, 75, 1073, 1863, 429, 0, 0, 0, 0, 35, 1882, 10145, 9794, 1430, 0, 0, 0, 0, 9, 2131, 31345, 84977, 50380, 4862, 0, 0, 0, 0, 1, 1661, 64395, 417220, 658423, 255606, 16796
Offset: 0

Views

Author

Joerg Arndt, Jan 20 2024

Keywords

Comments

A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.

Examples

			1,
0, 1,
0, 0, 2,
0, 0, 1, 5,
0, 0, 0, 9, 14,
0, 0, 0, 5, 59,   42,
0, 0, 0, 1, 92,  342,    132,
0, 0, 0, 0, 75, 1073,   1863,     429,
0, 0, 0, 0, 35, 1882,  10145,    9794,     1430,
0, 0, 0, 0,  9, 2131,  31345,   84977,    50380,     4862,
0, 0, 0, 0,  1, 1661,  64395,  417220,   658423,   255606,    16796,
0, 0, 0, 0,  0,  912,  95477, 1370141,  4818426,  4835924,  1285453,   58786,
0, 0, 0, 0,  0,  350, 107002, 3291589, 23507705, 50477693, 34184279, 6428798, 208012,
...
		

Crossrefs

Cf. A000108 (main diagonal), A336070 (row sums), A369322 (column sums).
T(2n,n) gives A373115.
Cf. A137251.

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1, add(
          b(n-1, j, t+`if`(j>=i, 1, 0))*`if`(j>=i, x, 1), j=0..t+1)))
        end:
    T:= (n, k)-> coeff(b(n, -1$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, Sum[
       b[n - 1, j, t + If[j >= i, 1, 0]]*If[j >= i, x, 1], {j, 0, t + 1}]]];
    T[n_, k_] := Coefficient[b[n, -1, -1], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N, N, r, c, -1);  \\ memoization
    a(n, k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n, k] != -1 , return( M[n, k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j, i) * binomial(i, j) * a( n-i, k-j-1 )) );
        M[n, k] = s;
        return( s );
    }
    \\ for (n=0, N, print1( sum(k=1, n, a(n, k)), ", "); ); \\ A336070
    for (n=0, N, for(k=0, n, print1(a(n, k), ", "); ); print(); );
    \\ Joerg Arndt, Jan 20 2024

Formula

T(n,n) = A000108(n) (number of length-n weak ascent sequences with maximal number of weak ascents).
Showing 1-1 of 1 results.