A369324 Array read by ascending antidiagonals: A(n,k) is the number of words of length n on an alphabet [k], avoiding 120 and 210, and sortable by a stack of depth 2, where k >= 0.
0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 25, 16, 5, 1, 0, 1, 32, 65, 56, 25, 6, 1, 0, 1, 64, 161, 176, 105, 36, 7, 1, 0, 1, 128, 385, 512, 385, 176, 49, 8, 1, 0, 1, 256, 897, 1408, 1281, 736, 273, 64, 9, 1, 0, 1, 512, 2049, 3712, 3969, 2752, 1281, 400, 81, 10, 1
Offset: 0
Examples
The array begins: 0, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 1, 4, 9, 16, 25, ... 0, 1, 8, 25, 56, 105, ... 0, 1, 16, 65, 176, 385, ... 0, 1, 32, 161, 512, 1281, ... ...
Links
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Sorting inversion sequences, arXiv:2401.06662 [math.CO], 2024. See Theorem 3.18 at page 10.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=(1-(-1)^k)/2+2^n Sum[Binomial[n+k-3-2i,n-1],{i,0,Floor[(k-2)/2]}]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten