cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369326 Array read by ascending antidiagonals: A(n,k) is the number of words of length n over the alphabet [k] and sortable by a (2,1)-pop stack of depth 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 24, 16, 5, 1, 0, 1, 32, 59, 52, 25, 6, 1, 0, 1, 64, 138, 149, 95, 36, 7, 1, 0, 1, 128, 313, 396, 310, 156, 49, 8, 1, 0, 1, 256, 696, 1003, 923, 571, 238, 64, 9, 1, 0, 1, 512, 1527, 2458, 2585, 1884, 966, 344, 81, 10, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 20 2024

Keywords

Examples

			The array begins:
  1, 1,  1,   1,   1,   1, ...
  0, 1,  2,   3,   4,   5, ...
  0, 1,  4,   9,  16,  25, ...
  0, 1,  8,  24,  52,  95, ...
  0, 1, 16,  59, 149, 310, ...
  0, 1, 32, 138, 396, 923, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1 or n=0), A000079 (k=2).
Cf. A001477 (n=1), A000290 (n=2), A256857 (n=3).
Cf. A369324, A369327 (main diagonal), A369328 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=SeriesCoefficient[((1-x)(1-2x)-((1-x)(1-2x)+x^2)y)/((1-x)(1-2x)-(1-x)(2-3x)y+(1-2x)y^2),{x,0,n},{y,0,k}]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

G.f.: ((1 - x)(1 - 2*x) - ((1 - x)*(1 - 2*x) + x^2)*y)/((1 - x)*(1 - 2*x) - (1 - x)*(2 - 3*x)*y + (1 - 2*x)*y^2).

A369325 a(n) is the number of words of length n over the alphabet [n], avoiding 120 and 210, and sortable by a stack of depth 2.

Original entry on oeis.org

0, 1, 4, 25, 176, 1281, 9472, 70785, 533248, 4042753, 30808064, 235778049, 1810915328, 13951401985, 107765334016, 834322202625, 6472333459456, 50299072937985, 391513776848896, 3051764505903105, 23818327111499776, 186112536460918785, 1455790849571946496, 11398349517712523265
Offset: 0

Views

Author

Stefano Spezia, Jan 20 2024

Keywords

Crossrefs

Main diagonal of A369324.

Programs

  • Mathematica
    a[n_] := (1-(-1)^n)/2 + 2^n*Sum[Binomial[2(n-i)-3,n-1],{i,0,Floor[(n-2)/2]}]; Array[a,24,0]

Formula

a(n) = A000035(n) + 2^n*Sum_{i=0..floor((n-2)/2)} binomial(2*(n - i)- 3, n - 1).
a(n) ~ 8^(n-1)*hypergeom([1, 1 - n/2, (3 - n)/2], [(3 - 2*n)/2, 2 - n], 1)/sqrt(n*Pi).
Showing 1-2 of 2 results.