cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369336 Number of n X n Fishburn matrices with entries in the set {0,1,...,n}.

Original entry on oeis.org

1, 1, 12, 2052, 5684480, 305416893750, 391129148721673152, 14286237711414132094989064, 17309880507327972883933887341789184, 792117985317303404452447777723478865406570410, 1534214120588806182890487155420702132205591283310000000000
Offset: 0

Views

Author

Alois P. Heinz, Jan 20 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,n}-matrices with no zero rows or columns.

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 12:
  [10] [10] [20] [20]  [11] [11] [21] [21]  [12] [12] [22] [22]
  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2].
		

Crossrefs

Main diagonal of A369415.

Programs

  • Maple
    a:= n-> coeff(series(add(x^j*mul(((n+1)^i-1)/(1+x*
        ((n+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(a(n), n=0..10);

Formula

a(n) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((n+1)^i-1)/(1+x*((n+1)^i-1)).