cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369377 a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 4, 3, 3, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2
Offset: 0

Views

Author

Joerg Arndt, Jan 22 2024

Keywords

Examples

			In the following dots are used for zeros in the permutations and their inverses.
   n:    permutation    inv. perm.   a(n)
   0:    [ . 1 2 3 ]    [ . 1 2 3 ]   0
   1:    [ . 1 3 2 ]    [ . 1 3 2 ]   1
   2:    [ . 2 1 3 ]    [ . 2 1 3 ]   1
   3:    [ . 2 3 1 ]    [ . 3 1 2 ]   1
   4:    [ . 3 1 2 ]    [ . 2 3 1 ]   2
   5:    [ . 3 2 1 ]    [ . 3 2 1 ]   1
   6:    [ 1 . 2 3 ]    [ 1 . 2 3 ]   1
   7:    [ 1 . 3 2 ]    [ 1 . 3 2 ]   2
   8:    [ 1 2 . 3 ]    [ 2 . 1 3 ]   1
   9:    [ 1 2 3 . ]    [ 3 . 1 2 ]   1
  10:    [ 1 3 . 2 ]    [ 2 . 3 1 ]   2
  11:    [ 1 3 2 . ]    [ 3 . 2 1 ]   1
  12:    [ 2 . 1 3 ]    [ 1 2 . 3 ]   2
  13:    [ 2 . 3 1 ]    [ 1 3 . 2 ]   2
  14:    [ 2 1 . 3 ]    [ 2 1 . 3 ]   1
  15:    [ 2 1 3 . ]    [ 3 1 . 2 ]   1
  16:    [ 2 3 . 1 ]    [ 2 3 . 1 ]   2
  17:    [ 2 3 1 . ]    [ 3 2 . 1 ]   2
  18:    [ 3 . 1 2 ]    [ 1 2 3 . ]   3
  19:    [ 3 . 2 1 ]    [ 1 3 2 . ]   2
  20:    [ 3 1 . 2 ]    [ 2 1 3 . ]   2
  21:    [ 3 1 2 . ]    [ 3 1 2 . ]   1
  22:    [ 3 2 . 1 ]    [ 2 3 1 . ]   2
  23:    [ 3 2 1 . ]    [ 3 2 1 . ]   2
		

Crossrefs

Formula

a(n) + A369376(n) = A055093(n).
Showing 1-1 of 1 results.