cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369401 Expansion of (1/x) * Series_Reversion( x / (1+x) * (1-x^3)^3 ).

Original entry on oeis.org

1, 1, 1, 4, 16, 46, 139, 511, 1891, 6707, 24366, 91840, 348236, 1320309, 5056414, 19565036, 76077330, 296994727, 1165438921, 4594915664, 18181401268, 72176250259, 287450966807, 1148178877918, 4598148937702, 18458646079181, 74267340207247
Offset: 0

Views

Author

Seiichi Manyama, Jan 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x)*(1-x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(n+1,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x) / (1-x^3)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024

A370217 Coefficient of x^n in the expansion of ( (1+x)^2 / (1-x^3)^3 )^n.

Original entry on oeis.org

1, 2, 6, 29, 166, 927, 5055, 27687, 153702, 861950, 4862481, 27543111, 156571951, 892919445, 5106591405, 29275176204, 168181755750, 967967551701, 5580293663274, 32217589171489, 186253647533841, 1078046039503182, 6246592211179337, 36231065957573793
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2024

Keywords

Crossrefs

Cf. A369402.

Programs

  • PARI
    a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial(u*n, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(3*n+k-1,k) * binomial(2*n,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / (1+x)^2 * (1-x^3)^3 ). See A369402.
Showing 1-2 of 2 results.