cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369407 A variant of A008336 based on polynomials over GF(2) (see Comments for precise definition).

Original entry on oeis.org

1, 2, 6, 24, 120, 20, 108, 864, 96, 960, 6720, 624, 6192, 37152, 491232, 30702, 1806, 127, 1905, 27348, 486596, 25102, 1890, 19760, 456624, 5581280, 439712, 21624, 451032, 5199760, 123954032, 3966529024, 123317760, 3850804224, 127210628096, 4070965504
Offset: 1

Views

Author

Rémy Sigrist, Jan 22 2024

Keywords

Comments

Let P(m) denote the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m.
Let b(1) = 1 and for any n > 0, if P(n) divides b(n) then b(n+1) = b(n) / P(n), otherwise b(n+1) = b(n) * P(n).
For any n > 0, a(n) is the unique number v such that P(v) = b(n).

Examples

			The first terms, alongside the corresponding polynomials, are:
  n   a(n)  b(n)                   P(n)
  --  ----  ---------------------  -----------
   1     1  1                      1
   2     2  X                      X
   3     6  X^2 + X                X + 1
   4    24  X^4 + X^3              X^2
   5   120  X^6 + X^5 + X^4 + X^3  X^2 + 1
   6    20  X^4 + X^2              X^2 + X
   7   108  X^6 + X^5 + X^3 + X^2  X^2 + X + 1
   8   864  X^9 + X^8 + X^6 + X^5  X^3
   9    96  X^6 + X^5              X^3 + 1
  10   960  X^9 + X^8 + X^7 + X^6  X^3 + X
		

Crossrefs

Cf. A008336.

Programs

  • PARI
    P(n) = Mod(1, 2) * Pol(binary(n))
    P_1(p) = fromdigits(lift(Vec(p)), 2)
    { b = 1; for (n = 1, 36, p = P(n); if (b % p==0, b \= p, b *= p); print1 (P_1(b)", ");); }