A369407 A variant of A008336 based on polynomials over GF(2) (see Comments for precise definition).
1, 2, 6, 24, 120, 20, 108, 864, 96, 960, 6720, 624, 6192, 37152, 491232, 30702, 1806, 127, 1905, 27348, 486596, 25102, 1890, 19760, 456624, 5581280, 439712, 21624, 451032, 5199760, 123954032, 3966529024, 123317760, 3850804224, 127210628096, 4070965504
Offset: 1
Examples
The first terms, alongside the corresponding polynomials, are: n a(n) b(n) P(n) -- ---- --------------------- ----------- 1 1 1 1 2 2 X X 3 6 X^2 + X X + 1 4 24 X^4 + X^3 X^2 5 120 X^6 + X^5 + X^4 + X^3 X^2 + 1 6 20 X^4 + X^2 X^2 + X 7 108 X^6 + X^5 + X^3 + X^2 X^2 + X + 1 8 864 X^9 + X^8 + X^6 + X^5 X^3 9 96 X^6 + X^5 X^3 + 1 10 960 X^9 + X^8 + X^7 + X^6 X^3 + X
Links
Crossrefs
Cf. A008336.
Programs
-
PARI
P(n) = Mod(1, 2) * Pol(binary(n)) P_1(p) = fromdigits(lift(Vec(p)), 2) { b = 1; for (n = 1, 36, p = P(n); if (b % p==0, b \= p, b *= p); print1 (P_1(b)", ");); }
Comments