A369408 Irregular triangle read by rows: T(n,k) is the length of the shortest proof for the MIU formal system string (theorem) given by A369173(n,k).
1, 4, 2, 2, 11, 5, 8, 5, 8, 3, 9, 9, 6, 9, 5, 6, 9, 6, 3, 6, 3
Offset: 2
Examples
Triangle begins: [2] 1; [3] 4 2 2; [4] 11 5 8 5 8 3; [5] 9 9 6 9 5 6 9 6 3 6 3; ... For the theorem MUI (301), which is given by A369173(3,1), the shortest derivation from the axiom MI is MI (31) -> MII (311) -> MIIII (31111) -> MIU (301) (4 lines), so T(3,1) = 4.
References
- Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.
Links
Crossrefs
Programs
-
Mathematica
MIUStringsW3[n_] := Map[FromCharacterCode[# + 48]&, Select[Tuples[{0, 1}, n - 1], ! Divisible[Count[#, 1], 3] &]]; MIUStepDW3[s_] := DeleteDuplicates[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0", "00" -> ""}]} &, s]]]; Module[{rowmax = 5, treedepth = 10, tree}, tree = NestList[MIUStepDW3, {"1"}, treedepth]; Map[Quiet[Check[Position[tree, #, {2}][[1,1]], "Not found"]]&, Array[MIUStringsW3, rowmax - 1, 2], {2}]]
Formula
T(n,k) <= A369410(n,k).
Comments