cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369415 Number A(n,k) of n X n Fishburn matrices with entries in the set {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 12, 10, 0, 1, 4, 36, 264, 122, 0, 1, 5, 80, 2052, 19632, 3346, 0, 1, 6, 150, 9280, 505764, 4606752, 196082, 0, 1, 7, 252, 30750, 5684480, 511718148, 3311447232, 23869210, 0, 1, 8, 392, 83160, 39378750, 17672135680, 2088275673636, 7202118117504, 5939193962, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,k}-matrices with no zero rows or columns.

Examples

			A(2,3) = 3*3*4 = 36:
  [10] [10] [10]  [20] [20] [20]  [30] [30] [30]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [11] [11] [11]  [21] [21] [21]  [31] [31] [31]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [12] [12] [12]  [22] [22] [22]  [32] [32] [32]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [13] [13] [13]  [23] [23] [23]  [33] [33] [33]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
Square array A(n,k) begins:
  1,    1,       1,         1,           1,            1, ...
  0,    1,       2,         3,           4,            5, ...
  0,    2,      12,        36,          80,          150, ...
  0,   10,     264,      2052,        9280,        30750, ...
  0,  122,   19632,    505764,     5684480,     39378750, ...
  0, 3346, 4606752, 511718148, 17672135680, 305416893750, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A005321, A289314, A289315.
Rows n=0-3 give: A000012, A001477, A011379, A369423.
Main diagonal gives A369336.

Programs

  • Maple
    A:= (n, k)-> coeff(series(add(x^j*mul(((k+1)^i-1)/(1+x*
               ((k+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((k+1)^i-1)/(1+x*((k+1)^i-1)).